Sunday, July 18, 2010

Considerations for Hierarchical Network Switches

Traffic Flow Analysis

To select the appropriate switch for a layer in a hierarchical network, you need to have specifications that detail the target traffic flows, user communities, data servers, and data storage servers.

Companies need a network that can meet evolving requirements. A business may start with a few PCs interconnected so that they can share data. As the business adds more employees, devices, such as PCs, printers, and servers, are added to the network. Accompanying the new devices is an increase in network traffic. Some companies are replacing their existing telephone systems with converged VoIP phone systems, which adds additional traffic.

When selecting switch hardware, determine which switches are needed in the core, distribution, and access layers to accommodate the bandwidth requirements of your network. Your plan should take into account future bandwidth requirements. Purchase the appropriate Cisco switch hardware to accommodate both current needs as well as future needs. To help you more accurately choose appropriate switches, perform and record traffic flow analyses on a regular basis.

Traffic Flow Analysis

Traffic flow analysis is the process of measuring the bandwidth usage on a network and analyzing the data for the purpose of performance tuning, capacity planning, and making hardware improvement decisions. Traffic low analysis is done using traffic flow analysis software. Although there is no precise definition of network traffic flow, for the purposes of traffic flow analysis we can say that network traffic is the amount of data sent through a network for a given period of time. All network data contributes to the traffic, regardless of its purpose or source. Analyzing the various traffic sources and their impact on the network, allows you to more accurately tune and upgrade the network to achieve the best possible performance.

Traffic flow data can be used to help determine just how long you can continue using existing network hardware before it makes sense to upgrade to accommodate additional bandwidth requirements. When you are making your decisions about which hardware to purchase, you should consider port densities and switch forwarding rates to ensure adequate growth capability. Port density and forwarding rates are explained later in this chapter.

There are many ways to monitor traffic flow on a network. You can manually monitor individual switch ports to get the bandwidth utilization over time. When analyzing the traffic flow data, you want to determine future traffic flow requirements based on the capacity at certain times of the day and where most of the data is generated and sent. However, to obtain accurate results, you need to record enough data. Manual recording of traffic data is a tedious process that requires a lot of time and diligence. Fortunately, there are some automated solutions.

Analysis Tools

Many traffic flow analysis tools that automatically record traffic flow data to a database and perform a trend analysis are available. In larger networks, software collection solutions are the only effective method for performing traffic flow analysis. The figure displays sample output from Solarwinds Orion 8.1 NetFlow Analysis, which monitors traffic flow on a network. While the software is collecting data, you can see just how every interface is performing at any given point in time on the network. Using the included charts, you can identify traffic flow problems visually. This is much easier than having to interpret the numbers in a column of traffic flow data.

User Communities Analysis

User community analysis is the process of identifying various groupings of users and their impact on network performance. The way users are grouped affects issues related to port density and traffic flow, which, in turn, influences the selection of network switches. Port density is explained later in this chapter.

In a typical office building, end users are grouped according to their job function, because they require similar access to resources and applications. You may find the Human Resource (HR) department located on one floor of an office building, while Finance is located on another floor. Each department has a different number of users and application needs, and requires access to different data resources available through the network. For example, when selecting switches for the wiring closets of the HR and Finance departments, you would choose a switch that had enough ports to meet the department needs and was powerful enough to accommodate the traffic requirements for all the devices on that floor. Additionally, a good network design plan factors in the growth of each department to ensure that there are enough open switch ports that can utilized before the next planned upgrade to the network.

As shown in the figure, the HR department requires 20 workstations for its 20 users. That translates to 20 switch ports needed to connect the workstations to the network. If you were to select an appropriate access layer switch to accommodate the HR department, you would probably choose a 24 port switch, which has enough ports to accommodate the 20 workstations and the uplinks to the distribution layer switches.

Future Growth
But this plan does not account for future growth. Consider what will happen if the HR department grows by five employees. A solid network plan includes the rate of personnel growth over the past five years to be able to anticipate the future growth. With that in mind, you would want to purchase a switch that can accommodate more than 24 ports, such as stackable or modular switches that can scale.

As well as looking at the number of devices on a given switch in a network, you should investigate the network traffic generated by end-user applications. Some user communities use applications that generate a lot of network traffic, while other user communities do not. By measuring the network traffic generated for all applications in use by different user communities, and determining the location of the data source, you can identify the effect of adding more users to that community.

A workgroup-sized user community in a small business is supported by a couple of switches and typically connected to the same switch as the server. In medium-sized businesses or enterprises, user communities are supported by many switches. The resources that medium-sized business or enterprise user communities need could be located in geographically separate areas. Consequently, the location of the user communities influences where data stores and server farms are located.



If the Finance users are using a network-intensive application that exchanges data with a specific server on the network, it may make sense to locate the Finance user community close to that server. By locating users close to their servers and data stores, you can reduce the network diameter for their communications, thereby reducing the impact of their traffic across the rest of the network.

One complication of analyzing application usage by user communities is that usage is not always bound by department or physical location. You may have to analyze the impact of the application across many network switches to determine its overall impact.


1 komentar:

Anonymous said...

I love that I can see traffic on my site with flow analysis software.

Post a Comment

 
Trends K N A Copyright © 2009
Fresh Girly Blogger Template Designed by Herro | Powered By Blogger